Cocaine Exposure Shifts the Balance of Associative Encoding from Ventral to Dorsolateral Striatum

نویسندگان

  • Yuji Takahashi
  • Matthew R Roesch
  • Thomas A Stalnaker
  • Geoffrey Schoenbaum
چکیده

Both dorsal and ventral striatum are implicated in the "habitization" of behavior that occurs in addiction. Here we examined the effect of cocaine exposure on associative encoding in these two regions. Neural activity was recorded during go/no-go discrimination learning and reversal. Activity in ventral striatum developed and reversed rapidly, tracking the valence of the predicted outcome, whereas activity in dorsolateral striatum developed and reversed more slowly, tracking discriminative responding. This difference is consistent with the putative roles of these two areas in promoting habit-like behavior. Dorsolateral striatum has been directly implicated in habit or stimulus-response learning, whereas ventral striatum appears to be involved indirectly by allowing cues associated with reward to exert a general motivational influence on responding. Interestingly cocaine exposure did not uniformly enhance processing across both regions. Instead cocaine reduced the degree and flexibility of cue-evoked firing in ventral striatum while marginally enhanced cue-selective firing in dorsolateral striatum. Thus cocaine exposure causes regionally specific effects on neural processing in striatum; these effects may promote the habitization of behavior by shifting control from ventral to dorsolateral regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basolateral and central amygdala differentially recruit and maintain dorsolateral striatum-dependent cocaine-seeking habits.

In the development of addiction, drug seeking becomes habitual and controlled by drug-associated cues, and the neural locus of control over behaviour shifts from the ventral to the dorsolateral striatum. The neural mechanisms underlying this functional transition from recreational drug use to drug-seeking habits are unknown. Here we combined functional disconnections and electrophysiological re...

متن کامل

Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys.

The present study examined the time course of alterations in levels of dopamine transporter (DAT) binding sites that accompany cocaine self-administration using quantitative in vitro receptor autoradiography with [(3)H]WIN 35,428. The density of dopamine transporter binding sites in the striatum of rhesus monkeys with 5 d, 3.3 months, or 1.5 years of cocaine self-administration experience was c...

متن کامل

The expanding effects of cocaine: studies in a nonhuman primate model of cocaine self-administration.

Although neuroimaging investigations in human cocaine abusers have provided important insights into the brain changes that accompany drug use, the interpretation of reports in human abusers can be very difficult. Studies in nonhuman primates provide a way to systematically evaluate the structural and functional adaptations engendered by cocaine self-administration without the confounds of human...

متن کامل

Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains.

The primate striatum is composed of limbic, cognitive, and sensorimotor functional domains. Although the effects of cocaine have generally been associated with the ventral striatum, or limbic domain, recent evidence in rodents suggests the involvement of the dorsal striatum (cognitive and sensorimotor domains) in cocaine self-administration. The goals of the present studies were to map the topo...

متن کامل

Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release

Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in Integrative Neuroscience

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2007